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1 Introduction

Assistive robots promise to re-enable users with motor impairments to perform
activities of daily living. Among different methods of assistance, with various
degrees of autonomy, shared control empowers users with the ability to interact
with their environment in a convenient manner. In previous work we introduced
Shared Control Templates (SCT) [4] with the aim to reliably assist users in
successful task execution, primarily demonstrated on the EDAN robot, see Fig. 1.
One of the core SCT components are active constraints, restricting the robot task
space to safely guide the user.

Currently, designing SCTs requires robotic expertise; to fully exploit their po-
tential, SCT's should be easy to design and modify. Given their ability to approx-
imate continuous functions, together with measures of uncertainty and strong
adaptation properties, probabilistic learning from demonstration approaches are
promising candidates to fulfill such requirements. In this work, we introduce an
approach that combines Kernelized Movement Primitives (KMP) [2] and Gen-
eralized Cylinders [1] to derive active constraints from end-effector trajectories,
for example demonstrated by kinesthetic teaching. Additionally, making use of
KMP adaptation capabilities [5], we present a correction mode allowing users to
modify SCTs at runtime, adapting the assistance provided by the framework to
new environmental constraints and requirements, such as following a different
path to complete a task.

2 Background

2.1 Shared Control Templates

An SCT consists of a set of states which, when executed sequentially, assist
a user in the completion of manipulation tasks. Each state contains an input
mapping — a mapping of user commands to manipulator end-effector velocities —
as well as active constraints — restrictions of the available task-space, guiding the
user to stay within regions that facilitate task completion and prevent undesired
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interactions with the environment. Within an active state, at every time step ¢
an input mapping computes a displacement of the robot 6D end-effector pose
from a 3D user command u(t) € [—1,1]®. Standards mappings include 1-to-1
mappings from u to end-effector linear velocities or angular velocities. An active
constraint then projects the desired end-effector pose to a subset of the task
space, providing guidance. Previous approaches to learning active constraints
have been proposed [3] albeit not easily adaptable and restricted to a pre-defined
set of geometric constraints.

2.2 Kernelized Movement Primitives

KMP estimate a model that predicts the value of an output variable & € RP
given observations of an input s € R! from a set of end-effector trajectories®.
KMP assumes that a reference trajectory distribution {,un,En}nN:l, encoding
the means, variations and correlations of £, is available to model P (€|s,,), where
Sp=1,..,~ are N given inputs. The expectation of the output variable is com-

puted, for a test input s*, using [2]:
E[¢(s")]= k" (K +\2) " p, (1)

where k*, K are evaluations of s* using the kernel function k(s;,s;), A > 0 is

a normalization factor and pu = [/,LI'—, e um T, 3 = blockdiag (X1,...,2yN).
The covariance of the output is also computed by KMP, see [2]. Querying a
KMP model with equally spaced time inputs provides an expected trajectory
of end-effector poses with associated covariance that can act as virtual guides,
assisting users in shared control.

Model adaptation An interesting property of KMPs is their adaptation ca-
pabilities. For a certain w,, if the covariance X, is small, the expectation at s,,
will be close to p,,. This provides a principled way for trajectory modulation: for
a new input 3, adding the pair {f1, £} to the reference distribution will ensure
that the expected trajectory passes through a desired via-point @, provided that
3 is small enough. Its downside is that it requires to invert the term K + A%
every time a new point is added, which can be computationally costly (O(n?)
complexity) depending on N. This can pose challenges if done during skill ex-
ecution. In recent work [5], the original KMP formulation was extended with
a term that locally modulates the trajectory distribution, enabling a more effi-
cient adaptation with O(n?) complexity while preserving the covariance profile.
In this work we introduce the online modulation of KMPs directly by user inputs
leveraging the formulation in [5] (see Section 3.2).

2.3 Generalized Cylinder

Consider an ellipse p in a 2-dimensional plane, perpendicular to an arbitrary reg-
ular curve I', in R3. The 3D surface generated by translating the plane containing

3 In this work we assume that s represents time and &€ the robot end-effector position.
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Fig. 1. Left: Simulation of the assistive robot EDAN starting a pick task, with an SCT
skill composed of two states: approach and lift, with two Generalized Cylinders learned
from demonstrations, one in each state, used as active constraints. Center Left: A
KMP model fitted on trajectories for approaching a bottle. Center right: Top, a
Generalized Cylinder derived from the fitted KMP; bottom, a Generalized Cylinder
derived from a deformed KMP. Right: KMP model with deformation generated by
the user with (2).

p along the arbitrary curve I' (referred to as the directrix), while keeping the
plane perpendicular to T, is a Generalized Cylinder [1]. A Generalized Cylinder
can use any smooth simple closed-curve for p, but only ellipses are considered
in this work. We here leverage the property that, while translating along the
directrix, such ellipses vary smoothly to derive active constraints for SCTs.

3 Proposed approach

3.1 Deriving active constraints from a KMP

Let us assume a KMP with time as input and position as output, as described
in Section 2.2. Provided with a dense linear sampling on the interval [0, 1], this
KMP outputs a trajectory distribution, containing a set of means and covariance
matrices. We propose to use the reference trajectory obtained from the means as
directrix I" for a Generalized Cylinder. Additionally, for every point along I', the
covariance matrix at an arbitrary variance threshold can be seen as an ellipsoid.
The intersection of this ellipsoid with a plane slicing through its center, with the
plane normal aligned with the trajectory, creates an ellipse p. The combination
of those intersections for every point of I' gives a set of ellipses representing the
surface of a Generalized Cylinder.

A Generalized Cylinder can then be used as an active constraint acting in
Cartesian space, by restricting the end-effector within its volume. A high variance
at a specific section of the demonstrated trajectories provides motion freedom
to the user, while a low variance constrains the user, e.g. at a specific grasp
pose. Generalized Cylinders can also be directly derived from trajectory data,
however adapting a Generalized Cylinder derived from data requires adaptation
of individual trajectories, while when deriving from KMP, one can use the KMP
adaptation capabilities, see below.
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3.2 Skill adaptation

As described in 2.2, one can adapt a KMP with via-points, but the computational
cost can be prohibitively high. Moreover, by altering the trajectory distribution
{umzn}ﬁf:l through the inclusion of via-points {fi, X}, one modifies the co-
variance of the resulting KMP too, since 3 needs to be small enough for the
via-point to be fulfilled. This results in a very restrictive active constraint which
may not always be desirable. Therefore we propose to act on the null space of
the KMP (NS-KMP) [5] and adapt SCTs directly from user commands w. In
practice, the user could trigger at t; a switch from the current skill execution to
a correction mode, where applying commands would continually deform the ex-
pected KMP trajectory, visualized on a tablet. An new trigger would then allow
the user to come back to the execution of the adapted skill. The deformation is
computed as:

E¢(s*)] = k* (K +AX) ' p+ |k* — k* (KHE)*K} a/tu(t)dt, (2)

s

where « is a scaling factor and k*, K are evaluations of the kernel function
at the location where the null space action is applied. Note that the first term
in (2) corresponds to (1), with the second term including a kernelized soft null
space projector k* — k* (K + )\E)_l K that deforms the original primitive only
locally, see Fig. 1 for an example and [5] for details.

4 Conclusion

We propose an approach combining probabilistic skill representations and gen-
eralized cylinders to learn and adapt shared control skills. Preliminary results
suggest that using NS-KMP as skill representation permits a computationally
efficient modulation of SCTs without decreasing motion freedom for users.
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